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SUMMARY 

The present work deals with the numerical calculation of the incompressible turbulent flow around aerofoils. 
An orthogonal curvilinear grid of 'C' type is used for the solution of the time averaged equations and Reynolds 
stresses are modelled according to the k--E turbulence model. PIS0 and SIMPLE algorithms are used to 
solve the strongly coupled system of the derived finite volume equations and convergence is improved by 
applying the method of variable local underrelaxation factors. Comparisons between the calculated and 
measured pressure distributions are presented for NACA 0012 and NACA 4412 wing sections. The formation 
of separation bubbles according to calculations is also shown. 
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INTRODUCTION 

The calculation of steady, separated flows around aerofoils is always important for many 
applications in fluid mechanics such as the design of wings, propeller blades, wind generators, 
cascades and other engineering configurations. In this case the presence of recirculation zones 
introduces two further difficulties in the computations. First, a very fine discretization of the flow 
field is necessary and, secondly, the appropriate modelling of the Reynolds stresses, which appear 
in the momentum equations of the mean flow, has not yet been established. 

For the computations around an aerofoil we are mainly interested in flows with restricted 
recirculation areas, whereas in other cases (for example the flow over a backward-facing step) they 
extend to large regions of the calculation domain. These areas may exist for angles of attack smaller 
than the stall angle, which corresponds to the maximum lift. For higher angles of attack massive 
separation is often related to unsteady flow phenomena characterized by vortex shedding. 

So far several methods have been developed'.' and satisfactory results have been obtained for 
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the solution of the Navier-Stokes equations in the case of separated laminar flows past aerofoils. 
Successful attempts have also been made for tubulent attached flows,3 where the Reynolds stresses 
can be modelled by simple eddy viscocity models. On the contrary, these models are not valid for 
turbulent separated flows where at least two-equation models are needed to overcome the closure 
problem. A remarkable preliminary investigation into this problem using a two-equation 
turbulence model (k--E) has been reported by Rhie and Chow.4 For the solution of the differential 
equations they used a co-ordinate transformation of the initial non-orthogonal grid around the 
aerofoil to a Cartesian system. Results have been presented for 0012 and 4412 NACA sections. 

The purpose of this work is to present a finite volume method for the solution of the complete 
Reynolds equations in a surface-orientated co-ordinate system, which can be dependent on the 
angle of incidence. The Reynolds stresses are modelled by the standard k--E turbulence model.5 
Although the introduction of an isotropic eddy viscocity is questionable, applications of this model 
have shown6 that satisfactory predictions for the mean flow components can be obtained. The flow 
field around the aerofoil is considered as fully turbulent because the location of transition cannot 
be predicted analytically. However if this location is known both laminar and turbulent regions 
can be treated simultaneously. 

In several previous  investigation^'*^ it has been shown that the errors which are introduced by 
the application of a certain discretization scheme are often of the same importance as those 
introduced by the turbulence model. In order to diminish the numerical diffusion in the present 
method, an orthogonal curvilinear co-ordinate system is used and the governing equations are 
solved in the physical plane. This co-ordinate system is also beneficial for both the application of 
the boundary conditions and the convergence of the resulting algebraic equations. 

CO-ORDINATE SYSTEM 

In the present work a ‘C‘ type orthogonal curvilinear co-ordinate system is used for the 
computation of the turbulent flow field around an aerofoil. The corresponding numerical grid is 
generated by a conformal mapping technique which is described in the sequel. 

The selection of this co-ordinate system is suggested by the finite difference formulation of the 
initial transport equations which govern the particular flow field. There are at least two regions of 
the flow around an aerofoil where the co-ordinate lines have to be orientated with the mean 
velocity vector in order to diminish the discretization errors due to ‘ f a l ~ e ’ ~ , ~  diffusion. The first is 
the region around the leading edge, where the flow is highly accelerated and large pressure gradients 
occur. The second is the trailing edge region where there is a strong interaction with the near wake 
and recirculation zones appear at large angles of attack. For both regions the above ‘C‘ type co- 
ordinate system is aligned with the flow direction near the solid boundary and allows for any 
desired grid refinement, depending on the available computer. 

The above considerations explain also why we have abandoned the adoption of two other 
familiar orthogonal curvilinear co-ordinate systems which can be used. The one is related to a grid 
generated by the intersections of stream and potential lines all around the foil. The refinement of 
this grid near the leading edge stagnation point is essentially difficult. Moreover serious numerical 
diffusion errors may be introduced since the accurate location of the stagnation point is not known a 
priori. The other co-ordinate system corresponds to an ‘0’ type grid around the aerofoil, which 
presents difficulties for the computation of the flow near the trailing edge.” 

The transformation 

The orthogonal curvilinear grid around a foil is generated by a direct conformal mapping of the 
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foil onto a circle. The mapping function has the general from" 

where [ = x + iy is the plane of the foil (Figure l), z = Re'" is the plane of the circle with radius R ,  
and C, = A ,  + iB,, n = - 1,0,1,2.. . are the coefficients of the transformation. 

For the foil contour one can easily obtain the relations 
m 

x(cp) = A -  coscp - B -  sincp + A. + 1 [A,cosncp + &,sin ncp], 
n =  1 

m 

y(cp) = B - ,  cos cp + A _ ,  sincp + Bo + C [B,cos ncp - A,sinncp]. (2) 
n =  1 

If the co-ordinates x, y are known functions of the angle cp on the circle of radius R, then the 
transformation coefficients are calculated from (2) by the following integrals: 

However, for an arbitrary foil the functions x(cp) and y(cp) are not specified. To overcome this 
difficulty we apply an iterative procedure for the determination of coefficients A,  and B,, which 
follows the following steps: 

1. For a given set of co-ordinates (x,, y,) on the foil contour (Figure 1) the Coefficients A,,  B,, 
n = - 1, .  . . , N are calculated approximately by the thin wing transformation method of 
Brockett." 

2. For the calculated values of A, ,  B,  the angles cp, which correspond to the co-ordinates (x,, y,) 
are estimated on the circle plane. For a point (x,, y,) the corresponding angle cp, is estimated 
by finding the minimum of the squared distance 

~i = [xp - x((~i)I '  + CYP - y(c~i)I', 

z plane - 5 plane  

f 

Figure 1. The conformal transformation 
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Figure 2. The orthogonal curvilinear grid around the NACA 4412 aerofoil 

where [qi]  is a specified partition on the circle and x(cpi), y ( q i )  are calculated from (2). The 
partition [qi]  is selected so that the error in the calculation of qp is always below 001". 

3. Given the set (xp,y,) and the corresponding angles q,, the coefficients A ,  and B, are 
calculated from integrals (3) by numerical integration. For an accurate evaluation of these 
integrals the functions x ( q )  and y ( q )  are assumed to vary linearly between two adjacent 
points on the foil. 

4. Steps 2 and 3 are repeated until A,,  B,  and qp are convergent within specified error bounds. 
Usually 30 iterations are needed for this convergence. 

5. Steps 2 to 4 are repeated by increasing the number N of coefficients A,, B, until the maximum 
error in the calculation of xp and y, from relations (2) is below 0.1 per cent. 

For the typical N A C A  sections which have been tested so far, it was found that a number N equal 
to 18 is adequate for an accurate representation of the wing section. 
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Grid generation 

After the coefficients of the general transformation (1) have been calculated, the orthogonal 
curvilinear grid around the aerofoil can be created by the mapping of a coresponding grid on the 
circle plane. 

A typical orthogonal curvilinear grid around the NACA 4412 wing section is shown in Figure 2. 
For computational purposes we define four boundaries around this 'C' type grid, that is the 
south (S) and north (N) boundaries which are separated by the common west boundary (W), and 
the east (E) boundary, which is also refered as the exist boundary. 

For the numerical solution of the Reynolds equations around the aerofoil we define two sets of 
co-ordinate lines along the two grid dimensions. These are the constant x ,  lines which are parallel 
to the foil contour and have their origin on the west boundary, and orthogonal to them, the 
constant x 1  lines. The mean velocity components are defined as u1 along the lines x ,  = constant 
and u, along x 1  = constant (Figure 2). 

THE GOVERNING EQUATIONS 

In the orthogonal curvilinear system around the aerofoil the general transport equation for a scalar 
variable 0 can be written as 

C ( 0 )  = D(0) + S,, (4) 

where 0 stands for the mean velocity components (u l ,  u2), the turbulence kinetic energy k and its 
dissipation rate E. The term C ( 0 )  describes the convection terms of the variable 0, i.e. 

where h ,  and h, are the metrics along the x 2  = constant and x1 = constant lines, respectively. The 
term D(@) in equation (4) shows the diffusion terms of the variable 0, i.e. 

where T, is given in Table I together with the expressions for S ,  for each variable 0 and the 
constants of the k--E model of turbulence. The components of the stress tensor oij which appear in 
the source terms S ,  of Table I are expressed as follows 

where, under the assumption of an isotropic eddy viscosity pt, the effective viscosity p e  is given by 

p e  = p + p, = p + CDp k2/E. ( 5 )  

Finally, the term G contained in the k and E source terms is defined as . 
The derivation of the above set of equations may be found in several References,' 3*14 and it can 

be shown that it is identical with the one used by Hackman, Raithby and Strong' for the 
calculation of the flow over a backward-facing step. 

The selected conformal mapping satisfies the requirement of continuity of curvatures along the 
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Table I. Source terms and constants for momentum and k--E 
equations 

i =  1.2 + -(hiaij) axj 

a.. ah. a,. a h .  

hihj axj  hihj axi 
+ 22 - LJ - D(@.) 

j = 2  if i = l  
j = l  if i = 2  

& 
& E 2  

C , G - - C z p -  
k k 

co-ordinate lines, which is implied by the curvature terms ( l /h ih j )dhj /dxi  of the transport 
equations. 

THE SOLUTION METHOD 

A finite volume approach* is used for the numerical solution of the set of transport equations (4). 
The control volumes for each variable Q, are shown in Figure 3 and they correspond to the 
staggered grid of Patankar and S~a1ding . l~  Integration of equation (4) in the corresponding 
control volume of a variable Q, results in an algebraic equation of the form 

ApQp = + As@, + A,@,, + A,@, + S,, (6) 

Figure 3. The control volumes 
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where @=u1,u2 ,k ,~  and the subscripts P,N,S,E,W correspond to the grid points shown in 
Figure 3. 

The convection and diffusion terms of the initial equation (4) are approximated according to the 
hybrid scheme of Spalding,16 that is central differencing is used when IPel < 2 and upwind 
differencing when l P e l 2  2, where Pe is the local Peclet number. The coefficients A in equations (6) 
are generally functions of the unknown variables CD and therefore an iterative procedure has to be 
applied for the solution of these equations. 

Boundary conditions 

Equations (6) are of elliptic type for each variable CD and boundary conditions need to be 
specified all around the external boundary of the 'C' type grid and on the aerofoil surface. 

At S and N boundaries (Figure 2) the mean velocity components u1 and u2 are calculated as 
components of the undisturbed velocity at infinity U ,  and k, E are taken equal to zero. This 
assumption is valid only when the boundaries are located far enough from the foil surface, at a 
distance which depends on both the Reynolds number and the angle of attack and can be estimated 
only by numerical experiments. So far, this distance has been found to be equal to three chord 
lengths for flows without separation and three to five chord lengths for flows with separation. An 
alternative was used for small angles of attack where the velocity components at boundaries S and 
N were calculated from the potential flow solution according to the conformal transformation.12 
This improved the numerical results since the external boundary could be placed closer to the foil 
surface for a given number of grid nodes. 

At the exit boundary, E, fully developed conditions are applied for all variables @, which 
corresponds to a Neumann condition with A ,  = 0. In all the tested cases this boundary was located 
about one chord length downstream from the trailing edge. 

On the foil surface the standard wall function method5 is used for the velocity component ul, the 
turbulence kinetic energy k and its dissipation rate E.  The near wall nodes are assumed to lie in the 
logarithmic law region where the flow is assumed one dimensional and the velocity is given by 
relation 

1 
U = -ln(Ey+), 

lc 
(7) 

where 

y+='(') 112 , 
V P  

- 1/2 

u:+) , 

ic x 0.42, 
E z 9.79, 

z, is the wall shear stress, v is the fluid kinematic viscosity, p is the fluid density and y is the normal 
distance from the wall. 

In the same region the generation of k is almost equal to its dissipation rate" and after some 
manipulations the following expressions can be derived: 
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These expressions are introduced in equations (6) as the boundary conditions on the wall. The uz 
velocity component is equal to zero on the same boundary, whereas for the pressure correction 
equation (which is described in the next section) the Neumann condition ap'/ay = 0 is applied. 

The solution algorithm 

Since the momentum equations for components u1 and u2 contain unknown pressure gradients, 
a simultaneous solution for the pressure field is needed. In the present work we follow the 
procedures of the S1MPLEl5 and the PIS0l8 algorithms which are based on a pressure correction 
equation derived for the satisfaction of mass conservation. According to these algorithms the 
following steps are followed: 

1. An initial pressure field is guessed according to the potential flow solution around the 
aerofoil. 

2. The systems of u1 and uz momentum equations (6) are solved (generally these systems are 
solved by successive applications of the tridiagonal matrix alg~rithm'~).  

3. The calculated velocities u1 and uz are corrected in order to satisfy the continuity equation in 
the control volumes of the pressure. Equations (6) can be written in the form 

UZP = 1 4 u z i  + Du2(Pn - P,) + SL2, i = N ,  s, E,  w. (9) 
I 

Assuming that the coefficients Ai and A:  and the source terms of the discretized equations (9) 
are constant, the following velocity perturbation equations can be derived18 corresponding 
to the points e, w, n and s of the pressure control volume (Figure 3): 

duZs = C Aisduzis + DuZs(Pb - P $ X  
i 

where p' stands for the correction of the pressure field and the index i corresponds to the four 
neighbouring points of e, w, n or s, as in equation (9). If the above velocity perturbations are 
inserted as the velocity corrections in the integral form of the continuity equation for each 
pressure control volume, a system of algebraic equations of the general form (6) is derived 
with the pressure correction p' as unknown variable. This system can be written in the form 

CAI CP'I = - D*l+ CFI. (1 1) 
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In equation (11) the elements of [A] are directly proportional to the coefficients of the 
pressure gradient terms of equations (lo), [D*] stands for the divergence of the velocity field 
in the pressure control volumes and the elements of [ F ]  are linear combinations of the 
summation terms on the right hand sides of equations (10). A direct solution of (1 1) would be 
very difficult since the elements of [F] are functions of the unknown pressure corrections. 
This is why simplified forms of equations (1 1) are used in order to calculate the velocity and 
pressure corrections. 

In the SIMPLE algorithm the elements of the matrix [ F ]  are assumed equal to zero, that is 
all the terms under the summation sign are neglected in equations (10) and the velocity 
perturbations are directly related to the pressure perturbations. Then the system (1 1) can be 
easily solved (as for the momentum equations) to obtain an approximate pressure correction 
field which is used to update the pressure field. The velocity components are corrected 
correspondingly using the truncated form of equations (10). 

With the PIS0 algorithm the pressure correction field is estimated in two steps. In the first 
step the same procedure as in the SIMPLE algorithm is followed, that is [ F ]  is neglected and 
a first approximation of p’ is calculated, which is used to obtain the velocity perturbations. In 
the second step these velocity perturbations are used to evaluate the elements of [ F ] .  Then 
the system (1 1) is solved again and a new pressure correction field is obtained. This second 
step is expected to give a better approximation for the pressure field, as it corresponds to a 
more accurate formulation of the pressure correction equation. 

4. The obtained velocity components u1 and u2 are used for the solution of k and E equations. 
Then the values of the effective viscosity pe are updated from (5). 

5. Steps 2 to 4 are repeated until numerical convergence is achieved. For the momentum 
equations numerical convergence is obtained when the following relation is satisfied: 

lResbl< c, 

where Resb is the residual source equal to the difference between the two sides of 
equation (1 1) for node P during the ith iteration, that is 

P 

and c is defined as 

c = (2YwUZ,)b, 

where Y, is the distance of the external node from the foil surface on the west boundary 
(Figure2) and b is a constant which is specified according to the desired convergence 
accuracy. (Usually the sum of the residual sources is normalized by the term in parentheses 
so that convergence is directly related to b). For all tested cases the value of b was equal to 

corresponding to a maximum change in the velocity field below 0.01 per cent during the 
last iterations of the numerical solution. 

For the pressure field, convergence is obtained when the sum of the velocity divergence in 
all control volumes of the pressure is less than a constant c’ which is equal to c /U , .  

Improvement of convergence rate 

Owing to the elliptic, non-linear and strongly implicit character of the system of equations (6), an 
underrelaxation method has to be applied in order to obtain convergence.18 According to this 
method the updated value anew of a variable Q is estimated as a linear combination of its previous 
value Qold and the corresponding solution Qo of system (6), that is 
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On,, = roo + (1 - r)aold, 0 < r < 1, 

where r is the underrelaxation factor. If this factor is assumed constant for a certain transport 
equation, two serious disadvantages arise. First, the value of the underrelaxation factor for which 
convergence is obtained is not known a priori and numerical tests are necessary for its specification. 
Secondly, the convergence rate is often very slow because it has been shown numerically that as the 
solution proceeds higher underrelaxation factors can be advantageous. 

In order to overcome the above disadvantages Neuberger et al.” have developed a method for 
an analytical determination of the local underrelaxation factors. This method is based on the 
analogy between the solution of the unsteady-state equations and the iterative solution of the 
steady-state equations. It has been shown2’ that a time-dependent method with an allowable time 
step At’ corresponds to an iterative steady-state method with local underrelaxation factors 

where r; is the local underrelaxation factor for grid point P during the ith iteration, 
A; is the coefficient of QP in equation (6)  and Vp is the control volume of the corresponding variable. 
The allowable time step At’ can be estimated by the conditions to be fulfilled, so that the 
time-dependent solution is stable and convergent. The general unsteady transport equation can be 
written as 

where the diffusion, convection and source terms have the same expressions as in equation (4). 
Convergence of the discretized equation (14) for grid point P at the ith time step is obtained when 
the following condition is fulfilled: 

where IC depends on the special problem under consideration and 

Experience has shown that K is in the range 0.1 < K < 1. In the present work the lower value of K ,  
equal to 0.1, has been used in all tested cases. 

Comparison of (14) with the discretized steady-state equation (6) and the residual source 
expression (12) results in relation 

a @ P  

at 
- pVp- = Re$. 

Using this relation, condition (1 5) can be transformed to the following inequality: 

where P is the velocity vector at grid point P. The above relation determines the allowable time step 
as a function of the residual sources of the steady-state solution and therefore an optimum 
underrelaxation factor r ;  through (1 3). 
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Table 11. The convergence behaviour of the numerical solution 

Normalized residual source sums with 
constant underrelaxation factors equal to 0.5 

Normalized residual source sums with 
optimum local underrelaxation factors 

U1 u2 velocity U l  u2 velocity 
Iteration momentum momentum divergence momentum momentum divergence 

1 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 

1.31 
3.09 x lo-' 
2.69 x lo-' 
2.42 x lo-' 
2.84 x lo-' 
2.88 x lo-' 
2.50 x lo-' 
1.09 x lo-' 
6.55 x 
3.60 x lo-' 
1.74 x lo-' 
8.38 x 10-3 
4.45 x 10-3 
2.62 x 10-3 
1.49 x 10-3 
975 x 10-4 

2.05 
1.92 x lo-' 
1.54 x lo-' 
1.70 x lo-' 
1.76 x lo-' 
2.50 x 10- ' 
1.49 x lo-' 
5.17 x low2 
7.30 x lo-' 
3.93 x 10-2 
1.76 x 
8.80 x 10-3 
4.56 x 10-3 
2.49 10-3 
1.46 x 10-3 
9.73 10-4 

2.66 
8.46 x 
2.57 x 
2.86 x lo-' 
3.45 x 10-2 
655 x 10-2 
2.52 x 
9.11 x 10-3 
4.76 x 10-3 
2.63 10-3 
1.30 x 10-3 
648 x 10-4 
3.46 10-4 
2.09 x 10-4 
1.33 x 10-4 
9.11 x 10-5 

1.31 
2.91 x lo-'  
2.91 x lo-' 
3.31 x lo-' 
948 x lo-' 
1.80 x lo-' 
8.29 x lo-' 
2.57 x lo-' 
733 x 10-3 
2.50 x 10-3 
9-50 x 10-4 

2.16 
2.55 x lo-' 
2.80 x lo-' 
3.01 x lo-' 
5-21 x lo-' 
1.17 x lo-'  
8.10 x lo-' 
2.46 x lo-' 
5.57 x 10-3 
2-12 x 10-3 
7-19 10-4 

4.37 
4.14 x 10- ' 
4.66 x lo-' 
693 x 10-1 
7.97 x 10-2 
1.79 x 10- ' 
972 x lo-' 
2.84 x lo-' 
7.14 x 10-3 
2.49 x 10-3 
9.98 10-4 

NACA 0012: Re = 3 x lo6; angle of attack 14", grid nodes 40 x 20 

By applying the above procedure for the determination of the local underrelaxation factors in 
each transport equation, a serious improvement in the convergence rate was achieved. A typical 
example of the solution behaviour with the number of iterations is given in Table I1 where the two 
methods of constant and variable local underrelaxation factors are compared. The corresponding 
computations have been carried out for the NACA 0012 wing section at an angle of attack equal to 
14". The numerical grid had 40 x 20 nodes and the Reynolds number was equal to 3 x lo6. With 
constant underrelaxation factors equal to 0-5 for all variables, convergence was obtained in 300 
iterations, as the values of the normalized residual sums in Table I1 show. When the method of the 
variable underrelaxation factors was used, convergence was achieved in 200 iterations. It is also 
remarkable that with this method the normalized residual sums have higher values during the first 
iterations, whereas they are reduced drastically as the solution proceeds. 

Numerical experiments have shown that increasing the number of grid nodes in order to obtain 
grid-independent solutions, the method of the variable underrelaxation factors required less than 
half the iterations which were necessary for convergence when constant underrelaxation factors 
were used. It should be noted here that the application of relation (13) has given convergent 
solutions only with the PIS0 algorithm. On the other hand, it has been found that when the 
constant underrelaxation factor method is applied both the SIMPLE and PIS0 algorithms 
require almost the same number of iterations to obtain convergence. 

RESULTS 

In order to test the accuracy and the behaviour of the present numerical method, computations 
have been carried out for NACA 0012 and NACA 4412 wing sections. In this section the results of 
the calculated surface pressure coefficients and corresponding lift coefficients are compared to 
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-1 Re =7.6 *lo5 
=P 

+1 

-3 
CP 

-2  

-1 

+1 

-:present calculations 
o :upper surface experiment 
v :  lower M I 

1 

Re =7.6,1O5 
a =8" 

Figure 4. Comparison of pressure distributions around the NACA 0012 aerofoil 

experiments. Also, the prediction of separation bubbles for high angles of attack is shown. 
A PRIME 450 mini-computer was used for all computations. In some cases the computer 

configuration did not allow us to obtain grid-independent solutions and the finer grid used for the 
computations was 70 x 60 nodes (the first number corresponds to x1 = constant lines and the 
second number to x2 = constant lines). 

N A C A  0012 aerofoil 

For NACA 0012 five different flow cases were tested, corresponding to angles of attack equal to 
O", 8", 12", 14" and 20". In all cases the Reynolds number was 7.6 x lo5, for which experimental data 
have been reported by Michos et a1.21 

0" angle of attack. Calculations have been performed for the zero angle of attack in order to 
check the symmetry of the numerical solution. A 50 x 60 grid was used with 80 nodes on the 
aerofoil surface and 150 iterations were needed for convergence, with the optimum underrelax- 
ation factor method. When the underrelaxation factors were assumed constant and equal to 05, 
convergence was achieved in 290 iterations. Comparisons of calculated pressure coefficients C, 
with experiments are shown in Figure 4 and good agreement is observed. 

8" angle of attack. A 50 x 60 grid was again used and convergence was obtained in 160 
iterations. The external boundaries N and S were placed at distances equal to three chord lengths 
from the aerofoil surface. Comparisons of calculated C,  with experimental values show (Figure 4) a 
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Re = 7 . 6 ~ 1 0 ~  

I _ _ _ .  . pot. flow 

0 : upper surface] experiment 

- 2  I \  \ 

cP -'r, 
-3 I 

\ 

-2 

\ 
+1 

Re =7.6=10" 

Figure 5. Comparison of pressure distributions around the NACA 0012 aerofoil 

good agreement. The calculated lift coefficient C ,  is 0.78, whereas the measured value was 0.82. 

12" angle of attack. At this angle the flow is still attached. A 60 x 60 grid was used for the 
computations with 90 points on the aerofoil surface and convergence was achieved in 330 iterations 
(always with the optimum underrelaxation factor method). The N and S boundaries were located 
four chord lengths away from the aerofoil surface. Comparisons of calculated C,  with experiments 
are presented in Figure 5 and seem satisfactory. The measured CL was 1.08 and according to 
calculations a value of 1-02 was obtained. In the same Figure the dashed line shows the potential 
flow calculations obtained by the conformal mapping method. In general the potential flow 
solution predicts higher values of C,  towards the leading edge, whereas large discrepancies are 
observed near the trailing edge between the predicted and the experimental values. As a result the 
calculated lift coefficient is always higher than that predicted by the turbulent flow solution. For 
this angle of attack the value of CL calculated by the potential flow solution was 1.44. 

14" angle of attack. Experiments showed that maximum lift was obtained between 13" and 14" 
angles of attack. At 14" unsteady flow phenomena were observed which cannot be predicted by the 
present method. However an attempt was made to calculate the steady flow field around the 
aerofoil by using the same grid as in the case of 12" incidence. Convergence was achieved in 450 
iterations. In Figure 6 the scaled mean velocity vector field around the aerofoil is plotted and a 
separation bubble is observed starting at the point S, which lies almost at the middle of the chord. 
In Figure 5 comparisons of calculated to measured values of C,  are presented and large 
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discrepancies are observed on the upper surface of the aerofoil. The experimental pressure 
distribution on this surface implies an extended separation region where there is no negative peak 
in C ,  (or at least it was too difficult to be measured). The calculated C ,  is 1.09, whereas the 
measured value was 0.83 for 14" incidence and 1.1 1 for 13" incidence. This implies that near the stall 
angle and before unsteady separation occurs the present calculations adequately predict the lift 
coefficient. 

At the same angle of attack calculations were carried out for a Reynolds number Re = 6 x lo6. 
The corresponding stall angle in this Reynolds number is about 16"." Convergence was again 
obtained in 430 iterations. In Figure 7 the plotting of the mean velocity vectors shows the effect of 
the higher Reynolds number on the formation of the separation bubble. The separation point is 
located closer to the trailing edge, whereas the reattachment point is almost the same as in the 
previous case. The experimentalz3 value of C ,  is 1.40, whereas the calculated value was 1-15. When 
a 70 x 60 grid with 110 nodes on the aerofoil was used the latter value was improved significantly to 
1-25. Unfortunately no grid-independent solution was obtained because of the limited computer 
configuration. 

20" angle of attack. Calculations at this angle of attack were carried out in order to test the 
convergence behaviour of the present method. A 70 x 60 grid was used with 110 points on the 
aerofoil and the N and S boundaries were located at a distance of seven chord lengths from the 
aerofoil surface. Convergence was obtained in 700 iterations. In Figure 8 the calculated C,  is 
compared with experiments. Although surprisingly good agreement is observed, future applic- 
ations of the method will demonstrate if it is reliable for flows at higher than stall angles of attack. 
In Figure 9 the plotting of the corresponding mean velocity vectors shows a large separation 
bubble extending almost all over the upper surface of the aerofoil. As a consequence, the calculated 
pressure coefficient on this area has almost a constant value except at a narrow region near the 
leading edge where high negative values are observed. The potential C,  values (dashed line in 
Figure 8) are quite different and show a remarkable difference in the location of the stagnation 
point. This is a well-known" difficiency of the potential flow methods. 

NACA 441 2 aerofoil 

For the NACA 4412 aerofoil, calculations were carried out for two angles of attack, that is for 
6.4" incidence at a Reynolds number Re = 3 x lo6 and for 13-87" incidence at Re = 1.5 x lo6, for 
which experimental data exist. 

6.4" angle of attack. A 50 x 60 grid was used in this case with 80 points on the aerofoil surface. 
Convergence was achieved in 170 iterations (with constant underrelaxation factors equal to 0.5, 
380 iterations were needed for convergence). The external boundaries were placed at a distance of 
three chord lengths from the profile surface. In Figure 10 the calculated C, is compared to 
experimentszz and very good agreement is observed. The predicted C ,  is 1.07, whereas its 
experimental value was 1-025. 

13.87" angle of attack. This is the stall angle for a Reynolds number equal to 1.5 x lo6 according 
to experiments of Coles and Wadco~k. '~ A 70 x 60 grid was used with 110 points on the aerofoil 
and the external boundaries were located at four chord lengths away from the foil surface. 
Convergence was achieved in 300 iterations. In Figure 10 comparisons are presented between the 
calculated and experimental C,. Some discrepancies are observed on the upper surface of the 
profile where lower negative values of C, are predicted, corresponding to a calculated lift coefficient 
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Figure 8. Comparison of pressure distributions around the NACA 0012 aerofoil 

somewhat lower than the experimental. However, according to recent calculations by Williamsz5 
the reference velocity of the experiments was about 8 per cent lower than the free-stream velocity. If 
this difference is taken into account the calculated values for both the pressures and the lift 
coefficient are in excellent agreement with the measurements. For the same angle of attack 
calculations were carried out at a higher Reynolds number R e =  3 x lo6 for which the 
experimental" value of C ,  is 1-50. In this case the predicted C ,  was found to be 1.52. In Figure 11 
the mean velocity vectors are plotted for Re = 1-5 x lo6 (there are only slight differences for the 
higher Re = 3 x lo6). A separation bubble is observed near the trailing edge region starting at 
80per cent of the chord length, whereas according to the measurementsz4 it was located at a 
distance of 87 per cent of the chord length from the leading edge. Numerical experiments have 
shown that when the number of grid nodes was increased from 50 x 40 to 70 x 60 the separation 
point moved towards the trailing edge from 60 to 80 per cent of the chord, whereas the change in 
the calculated C,  was not significant. A grid-independent solution could not be obtained because a 
very fine grid resolution is needed at the region of the bubble, which was beyond the capability of 
the available computer. 

The obtained results seem to agree better with the experiments than those by Rhie and Chow4 
and, besides, the convergence rate has been improved drastically. However, although promising, 
the predictions for the pressure coefficient on the foil surface are not the main objective of the 
present method, as by a modern viscous-inviscid interaction methodz5 the same accuracy (for 
angles of incidence up to stall) can be obtained at a fraction of the cost. These predictions are only 
indicative that the selected finite volume scheme and the associated co-ordinate system can be used 
to solve numerically the complete Reynolds equations, in order to investigate if it is possible to 
calculate in detail complex turbulent flow fields with existing turbulence models. In this respect, a 
thorough investigation is still necessary in order to evaluate both the numerical scheme and the 
turbulence model. First, it is necessary to obtain grid-independent solutions, because applications 
indicate that computations improve significantly as finer grids are used. The calculated mean 
velocity profiles and Reynolds stresses will also have to be compared with experiments in order to 
assess the applicability of the k--E turbulence model and the associated wall functions (the standard 
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Figure 10. Comparison of pressure distributions around the NACA 4412 aerofoil 

wall function method which is based on the logarithmic law (7) neglects the pressure gradient and 
the curvature terms which are very important around the leading edge). Another problem which 
has not yet been investigated is the effect of the laminar flow region on the numerical solution. If a 
laminar separation bubble occurs it will affect the numerical results at least near the leading edge. 
The determination of the transition point cannot be predicted analytically, but its location may be 
specified from existing experimental data. It should be noted here that experiments for separated 
flows are very difficult and measurements always have uncertainties which must kept in mind when 
comparisons with calculations are made. 

CONCLUSIONS 

The predictions of the present method for pressure distributions around NACA 0012 and 
NACA 4412 aerofoils at various angles of incidence seem to be adequate when compared to 
experiments. Some discrepancies in the calculated pressure coefficients and the estimation of the 
separation point were observed for angles of attack near stall. However the results improved 
significantly when finer grids were used. The use of variable underrelaxation factors was found 
considerably to improve the convergence rate. 

Future grid-independent results and the comparisons of the corresponding velocity profiles and 
Reynolds stresses with experiments are necessary to establish the adequacy of the k--E turbulence 
model for the calculation of separated flows around aerofoils. 
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